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Solitary waves and conjugate flows in a three-layer fluid
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Abstract

Interfacial symmetric solitary waves propagating horizontally in a three-layer fluid with constant density of each layer
are investigated. A fully nonlinear numerical scheme based on integral equations is presented. The method allows for steep
and overhanging waves. Equations for three-layer conjugate flows and integral properties like mass, momentum and kinetic
energy are derived in parallel. In three-layer fluids the wave amplitude becomes larger than in corresponding two-layer fluids
where the thickness of a pycnocline is neglected, while the opposite is true for the propagation velocity. Waves of limiting
form are particularly investigated. Extreme overhanging solitary waves of elevation are found in three-layer fluids with large
density differences and a thick upper layer. Surprisingly we find that the limiting waves of depression are always broad and
flat, satisfying the conjugate flow equations. Mode-two waves, obtained with a periodic version of the numerical method, are
accompanied by a train of small mode-one waves. Large amplitude mode-two waves, obtained with the full method, are close
to one of the conjugate flow solutiors.2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Internal waves in the ocean are a topic which receive a considerable attention for several reasons. This includes the
understanding of fundamental aspects like the wave propagation itself. Furthermore, internal waves may induce loads on floating
marine structures, or on members of such structures, and on connected equipment such as cables or risers. Itis of importance to
predict the wave induced loads and motions of the structures and the connected equipment (see, e.g., Grue et al. [1], Section 1).
Other important topics in relation to internal waves are many. Examples are included in, e.g., Duda and Farmer [2], where
a state-of-the art of the field may also be found.

Internal waves may attain a relatively large amplitude due to the generally small density variation in the ocean. This suggests
that fully nonlinear models of the waves are required. Existing fully nonlinear models mainly fall into two categories. The first
includes propagation of internal waves along a continuous stratification (Tung et al. [3]; Turkington et al. [4]; Lamb [5]; Grue
et al. [6]). In the second category, interfacial waves may propagate in a two-layer fluid (Amick and Turner [7]; Pullin and
Grimshaw [8]; Turner and Vanden-Broeck [9,10]; Grue et al. [1,11]). In the latter case, however, the effect of a finite thickness
of the pycnocline is neglected.

The efficiency of two-layer interfacial wave models may be extended to also account for a third fluid layer, or even several
layers. This is relevant to conditions in the ocean, see, e.g., Phillips [12] (his Figs. 6.9-11). In a two-layer fluid with constant
density in each of the layers, waves of mode-one may propagate. Generally waves of mode number Limigy propagate in
a fluid with n constant density layers. Thus, another motivation for generalizing a two-layer model to several layers is precisely
the possibility to investigate solitary waves of higher modes than one.
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We develop here a fully nonlinear three-layer model. An upper and a lower layer, with constant density in each layer, are
separated by a third layer with a density that is assumed to be constant. We investigate internal solitary waves of mode-one or
mode-two which are stationary in a frame of reference following the waves. (Mode-one and mode-two waves correspond to
the fast and slow linear propagation speeds obtained from the dispersion relation for three-layer fluid discussed in Section 3.2).
The model is applicable to steep and even overhanging waves. The mathematical problem is formulated in terms of complex
analysis. Discontinuous tangential velocities and continuity of pressure are imposed at the boundary between the layers.

We develop in parallel the equations governing conjugate flows comparing with the general three-layer model. Conjugate
flows in a two-layer fluid were studied by Benjamin [13], Mehrotra and Kelly [14], Amick and Turner [7], Turner and Vanden-
Broeck [10], Kakutani and Yamasaki [15]. In parallel to our work, Lamb [16] investigated conjugate flows for a three-layer
fluid, arriving at the same equations as ours.

The models are applied to investigate extreme waves. Existing results for limiting (overhanging) waves of elevation in
two-layer fluid (Pullin and Grimshaw [8]) are generalized to three-layer fluid. In contrast to the limiting waves of elevation,
however, all computations of waves of depression with very large amplitude showed non-overhanging profiles. This means that
the limiting form of waves of depression are broad and flat, according to the present computations. This is different from what
was indicated by the computations of Pullin and Grimshaw [8].

Mode-two waves, obtained with a periodic version of the numerical method, are accompanied by a train of small mode-
one waves. Mode-two waves have previously been investigated by Davis and Acrivos [17], Tung et al. [3], Akylas and
Grimshaw [18], Michallet and Dias [19,20]. The fact that a train of lower-mode short waves may ride on solitary waves of
higher mode than one is also noted for equatorial Rossby waves, see Boyd [21].

The paper is organized as follows: following the introduction, Section 2 describes the mathematical formulation, the
nonlinear integral method and the solution procedure. The equations of the conjugate flows are outlined in Section 3. This
section includes results for waves of mode-one and mode-two. Extreme waves are investigated in Section 4. Section 5 contains
a conclusion.

2. Nonlinear boundary integral model

The density within each layer is constant. The layers will in the following be named by numbers 1, 2 and 3, as shown in
Fig. 1. These numbers will be used as indexes for the physical parameters, referring to which layer they belong. In each layer
we assume irrotational motion of an incompressible, homogeneous and inviscid fluid. As done by Grue et al. [11], a frame of
reference moving with the wave is chosen. We introduce a coordinate systema@h the x-axis at the level of the lowest
interface, I, in the far-field, and the-axis pointing upwards, i.e. in the opposite direction of gravity. The upper interface is
namedJ/. The domain of fluick is denoted by2;. The density of the layers is denoted by, and the depth of the layers (at
rest) ishy, wherek = 1, 2, 3. There are rigid walls at = —h1 and aty = hy + h3.

2.1. Mathematical formulation
Complex analysis is applied. We introduce the complex coordinatex + iy (see Fig. 1) and the complex velocities

qr = up —ivg, k=1,2,3, whereu; andv; denote horizontal and vertical velocity, respectively. For irrotational flow of ideal
fluid within each layer, the complex velocity is an analytic functiorr oApplying Cauchy’s integral theorem, and following
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Fig. 1. Sketch of the three-layer fluid. The dashed lines are the interfaces of an actual solution near the Boussinesq limit. Such solutions are
thoroughly discussed in Section 3.2. The interfaces are symmetric abe@, and only the right parts are shown. The vertical direction is
stretched by a factor two.
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the procedure of Grue et al. [1] and [11], we arrive at the following integral equation involving the complex velocity of the
lower layer:

PV/ CIl(/Zi-f—cdz_/ g7 (@) +c d‘*z{hi(ql(z')—kc), 7 e,

- . 1
7 — 7%+ 2ihq i1 +o), Zel, @

I I

where an asterisk denotes complex conjugate and PV principal value. The latter only applies &vheidere we have assumed
thatg + ¢ rapidly approaches zero whén — oo. Further, we have applied the method of images where the intefféze
reflected about the flat bottom at= —/4. The integration is then alonfand its reflection about = —#1, instead of around
the curve enclosing21. The complex velocity on the reflected interface is equal to the complex conjugate of the vejocity
on I. This assures that the rigid lid condition is satisfied at —h1.

Applying Cauchy'’s integral theorem t» + ¢, integrating along a curve enclositizp, we obtain

H / /
Pvf 2@t _/ 2@ te, { —21iq2() + ). e, @)
7 —z 7 —z —mi(g2(z) +c¢), z €l
Forz’' € J, the expression is similar, except that the integral ovirthe principal value integral. The integration alahgnd.J
is fromx = —L tox = L, whereL — oo.
Following the same procedure as for layer 1, we obtain an integral equation invghzing

q3(z) t¢ q3*(2) +c x| —27i(g3(@) +0o), 7 €23,
py [ BRI Ty _ de* = | 7B i
7 — 7/ —z* = 2i(ho + h3) —mi(g3(z) +c), ' el.
J J

@)

As in Eq. (1) the principal values in Egs. (2) and (3) only apply whieis on either interface.

Since we have chosen a frame of reference in which the flow is stationary, the kinematic conditions are fulfilled by requiring
the velocities at the interfaces to be tangential ®nd J. Thus, the complex velocity on, e.d.,in layer 1, sayy1;, may be
expressed ag1; = ¢1/5/215- Heregy is the real velocity potential in layer 1, along interfalce;; means that is on7, and
()s means partial derivation with respect to the arc lengiong the interface.

The dynamic conditions are easily obtained by applying the Bernoulli equation for the pressure. Continuous pressure at
layer andJ then gives

1 1
501(62 — ¢115%) — 502(62 — ¢2152) — (p1— p2)gIM(z)) =0, zel, (4a)
1 1
502(62 —¢215%) — §p3(62 — ¢3752) — (02— p3)g(IM(z)) —hp) =0, zeJ. (4b)

Here, the values used for the Bernoulli head in each layer are found from the conditions of the flow in the far-field.
Discrete equations and the computational algorithm are given in Appendix A.

2.2. Accuracy

The results presented in the following sections are all tested to converge, and graphical accuracy is achieved. The number of
discrete points at the two interfaces are always chosen to be equal, varying from 100 to 240 on each interface, depending on the
steepness of the wave. In two exampléss chosen to be 300 and 600.

Since the points are distributed at equal intervals along the interfaces, and not along the horizontal axis, very steep or even
overhanging waves are easily calculated and verified to converge.

3. Solitary waves and conjugate flows

The derived equations are then applied to compute waves of permanent form. We perform computations of three-layer and
two-layer flows in parallel. A natural starting point is to compare results obtained by the full equations with simplified conjugate
flows solutions.

As mentioned in the Introduction, conjugate flows for two-layer fluids are described by Benjamin [13], Mehrotra and
Kelly [14], Amick and Turner [7], Turner and Vanden-Broeck [10] and extended to a two-layer fluid with a free surface by
Kakutani and Yamasaki [15] (assuming weak nonlinearity). In parallel to our work, Lamb [16] has investigated conjugate flows
for a three-layer fluid, arriving at the same equations that are given below.
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In the frame of reference moving with the wave spedhbe flow is stationary with fluid velocity in the far-field beingc.
At x = 0 we denoter; andaj as vertical elevations of the interfacésind J, respectively, relative to the undisturbed lower
interface/. Conservation of mass gives

—chy = ug(hy+ay), (5a)
—chy = up(ay —ay), (5b)
—chz = uz(ha+hz—ay), (5¢)

whereuy, k =1, 2, 3, are the uniform velocities in the respective layers &t0. Continuity of pressure at the interfaces yields

1 1
Epl(cz —up?) - 592(62 —u3?%) — (p1 — p2)ga; =0, (6a)
1 1
502(62 —uz?) - 503(62 —u3®) — (p2— p3)glay —hp) =0, (6b)
Conservation of momentum gives
[ (p+pu2) dy = [ (p—|—pu2)dy. )
X=00 x=0

By utilizing Bernoulli’s equation for the pressure, (7) becomes
1 1
—5P1ar+ h1)(c? — uf) + prasc? — SP2(ay = ap)(c? — u3) + palay —ay — hp)c?

1 1 1
- Eps(hz + hg —ay)(c? —ul) + pgtha —ay)c? — Eg(pl — pp)a? — Eg(pz — p3)(ay —hp)*=0. (8)

By substituting (5a)—(5c) into (6a), (6b) and (8), a set of equations to deteimineanda; is obtained. Solution(s) of the
equations are obtained by Newton—Raphson’s method.
In the Boussinesq limit Egs. (6a), (6b) and (8) simplify and become, respectively:

uzz—ulz—g/al =0, (9a)

ug? —uz? — g’ (ay —h2) =0, (9b)
1

(u% — u%)aI + (u% - M%)((Ij —hp) + hlu% + hzug + hgug —HP— Eg/(a? +(ay — h2)2) =0, (10)

whereg’ = g(p1 — p3)/p1, p2 = (p1+ p3)/2 andH = hy + hp + h3.
3.1. Mode-one conjugate flows

Mode-one conjugate flows are then considered. Three-layer conjugate flows are compared with corresponding two-layer
flows. We let the layer thicknesses of the latterandhs, be related to the layer thicknesses of the three-layer fluid by
o ho
=, hz=h3+ —. 11
> s=hst+ 7 11)
It follows that 0< hp < Zle for h1 > 0. Further, in the two-layer fluid, the density of the lower layesisvhile the density of
the upper layer ig3.
The solution of two-layer conjugate flows is obtained from our equations by put}ieg0, giving (Amick and Turner [7])

I’Allzhl-l-

P J/Pih3 — /p3hy (12)
VPi+p3

22 g(p1—,03)(h1+&)(h3—ﬁ)’ (13)

p1(h3 —a) + pa(h1 + @)
(with our notation) wheré anda denote the propagation speed and amplitude, respectively, of the collapsed intedades
Mode-one results of conjugate flows are displayed in Figs. 2(a)-2(c). The density ratios are representative for fresh water and
sea waterpz/p1 = 0.9775 ando2 = (p1 + p3)/2, thus quite close to the Boussjnegq limit. Results are shown for all possible
values ofhy/hq and for a wide range of relative thickness of the upper layet (3/h1 < 512). The differences between the




P.-O. Rusas, J. Grue / European Journal of Mechanics B/Fluids 21 (2002) 185-206 189

1 0.15
a 2 b
@ O
0.1
ar—a 06 (LJ—‘A}LQ—(I
o4 512 P
' 0.05 512
02
0 0
0 02 04 06 08 1 0 02 04 06 08 1
1.1
(c) 512
]
C
09
0.8
9
0.7 '
0 02 04 06 08 1
o
2h1

Fig. 2. Comparlson of mode-one conjugate flows for three- and two-layer fluidsa(a)} a)/hl (b) (ay — hp — a)/hl) and (c)c/¢ as
function of hp/(2h1). Results are shown fors/hq = 2, 4,8, 16,128 512. The curves withha /1 equal 2 and 512 are labeled. The other
curves are filling in monotonically between these outer limits. The curves for the two largest vahggshpfare almost coinciding. Densities
are p3 = 0.977%1 andpy = (p1 + p3)/2. Densities of the lower and upper layer in the two-layer fluida@rand p3, respectively.

elevations of the interfaces and the propagation speed, in the three- and two-layer fluids, are visualized. The propagation speed
of the three-layer solution is shown relative to the propagation speed of the two-layer solution. At the two extreme values of
ho/h1, the three-layer fluid degenerates to two layers. (With= 0 we obtain the two-layer solution (12)—(13). With = 2/1,

giving 11 = 0, we obtain a two-layer fluid with thickne&s and densityp, of the lower layer.)

We observe from Fig. 2(a) th&t; — 4)/h1 is positive for all calculated combinations of layer thicknesses. This means that
the elevation of the lower interfaderelative to its undisturbed level is always larger than the elevation of the single interface of
the two-layer fluid. The amplitude of the upper interfacg,— h», is also larger than the amplitude of the two-layer interface,
but the difference between them is smaller. In the two-layer fluid the streamline with maximal elevation is the interface itself.
In the three-layer fluid, the streamline of maximal deflection from its undisturbed level is the one coinciding with the lower
interface. Thus, the maximal vertical transport distance of a fluid particle in the three-layer flow is larger, and will happen for a
fluid particle relatively lower in the flow, than for a two-layer fluid.

The maximum level of the streamline originating from the center position of the middle layer in the far-field, is a relevant
measure of the wave amplitude. For later refereicdenotes this streamline. It follows from mass conservation that for the
flow atx = 0, the elevation of5 is the mean of the elevation éfandJ. Figures 2(a)-2(b) show that the elevation of bpth
andJ are larger than the elevation of the interface of the two-layer fluid. Thus the elevati@isddlso larger.

While the maximal amplitude of the three-layer solution is increased compared to the two-layer solution, the propagation
speed is lowered (Fig. 2(c)). The relative difference is largest for rather small thicknesses of the upper layer. If, on the other
hand, the upper layer has a large thickness, the three-layer propagation speed becomes close to the two-layer solution.

Itis noted that and¢ become equal and that the normalized differenges a anda; — ho — a become linear functions of
hg/(Zle) when the relative thickness of the upper layer becomes largehg <« 1, ho/h3 < 1). In Appendix B it is derived
that

aj—a _~N2hy a;—hz—&=<3«/— )hz (14)

;11 2 2h1 fll 2 ? 2m
which are valid in the Boussinesq limit whéa/h3 < 1, o/ h3 < 1. In (14),a = (h3 — h1)/2. The results in (14) confirm the
numerical predictions in Fig. 2 withz/p1 = 0.9775. In the limitho — 0, orky — 0, the two-layer results are recovered. The
slopes ofa; —a anda; — ho —a atho = 0 andhy = O (for anyhq/h3 andhy/h3) may be obtained from Egs. (34)—(36) in
Appendix B.

So far we have considered only cases wipgnp, and p3 are comparable. It is of interest to investigate wave properties
when the densities are varied. In Fig. 3 results for elevations and propagation speed are presented for a wide range of the density
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Fig. 3. Comparison of amplitude of interfaces and propagation speed of conjugate flows for three- and two-layer fluid for different densities.
(@) (ay —a)/hq; (b) (ay — ho — &)/hq) and (c)c/é as function ofiip/(2h7). All results with13/h1 = 4. The density differences are the same
across the two interfaces. Selected relative densitiepgliie, = 0.1,0.2,0.3, ..., 1.0 in addition topz/p1 = 0.9775, for which the solutions

are graphically coinciding with the results in the Boussinesq limit. The curves for relative densitisd010 are labeled. The results for the

other densities fill in monotonically between these outer limits.

ratio 01 < p3/p1 < 1. The densityoy is alwayspy = (p1 + p3)/2. In the computations a ratibs//i1 = 4 is chosen while
the thickness of the middle layer is varied. (There are no difficulties in the computationga)ih = 1, since equations with
pre-factors proportional to? are normalized bﬁz.)

From Eq. (12) it is evident that the amplitudein two-layer conjugate flows is decreasing with decreasing density ratio
p3/pP1 (keepingﬁg/ﬁl fixed). Figure 3(a) shows thay anda become closer for decreasipg/p1. This means that; is also
decreasing with decreasing density-ratio. The elevatioh@ampared to its undisturbed level is still larger than the elevation
of the two-layer interface, however, except for very smpallp1 and moderatdag/(zle) wherea; becomes less thah

In the Boussinesq limit the elevation gfin the three-layer fluid is only marginally larger than the elevation of the interface
in the two-layer fluid. Figure 3(b) shows that this difference is even smaller when the upper density is decreasgthiFor
lower than approximately.8 the difference becomes negative.

From Fig. 3(c) we observe that the propagation speed relative to the two-layer propagation speed decreases with decreasing
density ratiopz/p1-

3.2. Mode-one results with the complete model
The eigenvalue problem for any number of layers, giving also the dispersion relation, is formulated by Baines [22,

Section 4.1]. The dispersion relation for waves in a three-layer fluids was also obtained by Michallet and Dias [20] which
in our notation gives for the linear velocity:

g %
a4cg—a2<;>c(2)+ao<;) =0, (15)
where
T
ag = T3+RT1T2T3+S<T1+ %) (16a)
T8
ay = T1T3+ ToT3+ %(Tl —T3) — T1S(Ty + T3), (16b)
s
ag = T1T2T3<1—R—|—S— E), (16c¢)

v is the wavenumbef}, = tanhviy fork =1,2,3, R = pp/p1 andS = p3/p1.
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This gives two solutions foa*(z), a fast mode-one and a slow mode-two wave. WHhk= 0, the two-layer dispersion relation
with only a mode-one solution is obtained. In the long wave limit,(— 0, k = 1, 2, 3) the dispersion relation simplifies to

bacd — gbacd + g%ho =0, 17)
where
ha
by = h3+ S h1+§ , (18a)
hoS
by = hi1hz+ hoh3z+ T(h1—h3)—h1S(h2+h3), (18b)
S
by = h1h2h3<1—R+S— E) (18c)

In the Boussinesq limit, with equal density jumps across the interfaces, we obtain

\2h1h3+ hiho + hohg % [h3(h1 — ha)? + 4h2h2] Y2
4(h1+ ho + h3)

=g , (19)
whereg’ = g(p1 — p3)/ 1.

We also note that Moni and King [23] studied mode-one solitary waves in a two-layer fluid with a free surface. (They noted
that they were unable to find mode-two waves.)
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Fig. 4. Streamlines of three-layer solutions (first column) and of two-layer solutions (second column). Only the right halves of the symmetric
flows are shown. Note that for the three-layer fluid, the vertical coordinats, shifted,/2 downwards, such that the undisturbed middle
streamline,G, is aty = 0. Layer thicknesses afs/h1 = 4 andhy = hy. The net volume of the waves are428, 16,3242 under! for the
two-layer fluid and unde& for the three-layer fluid.
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Fig. 5. Velocity profiles of three-layer solutions (first column) and of two-layer solutions (second column) calculated from the solutions in
Fig. 4. The vertical dotted lines indicate the value of the propagation speed, and the dash-dot line the linear propagation velocity of the
two-layer fluid. All velocities are scaled with the long wave propagation speed of the three-layer fluid, which for these densities and depth ratios
is co threelayer= 0.121... (gh2)}/2. The vertical coordinate for the three-layer solutions is shifted as in Figh4/h1 =4, hy = hy.

We now exploit the numerical model described in Section 2 to compute moderately steep waves. Further, we obtain
information about the region connecting the conjugate flowsat0 andx — oo when the amplitudes are maximal. Focus
is directed to a single configuration, wiﬂg/ﬁl =4 and equal thicknesses of the middle and lower layersij.e- hy. The
densities are3 = 0.97751 andp, = (p1 + p3)/2. The results in Fig. 2 give elevationg/h = 1.73. . anda,/fz1 =225...
and propagation speegcg = 1.30.. ., wherecg=0.121... (gﬁl)l/ 2 s the long wave propagation speed of mode-one waves.

By calculating a series of solutions with increasing wave elevation we eventually reach a broad and flat solitary wave which has
the same values @f;, ay andc/cq as obtained by the equations of conjugate flow.

Figures 4 and 5 show the streamlines and velocity profiles for some of these solutions. Note that in these figures the
streamlines and velocity profiles are shifted an amauyiR = le/3 upwards, such that the undisturbed end;of aty = 0.
Similarities with and differences from the corresponding two-layer solutions then become more apparent. Figures 4 and 5 clearly
confirm that the elevation of the interfaces of the three-layer conjugate flow, compared to their undisturbed level, is larger than
for the conjugate flows in the two-layer fluid. (In Figs. 4 and 5 the net volume of the wave, lBetuvthe three-layer solution
and below! of the two-layer solution, is,2}, 8, 16, 32}2%.)

We observe in Fig. 5 that although the propagation speed is smaller for the three-layer solution, the fluid velocity is larger in
the lower and upper layers. (The horizontal velocity of the two-layer fluid is in the figure scaled by the long wave propagation
speedcg = 0.121... (gh1)1/? of the three-layer fluid.)

Figure 6 visualizes the elevations bf J and G as functions of the propagation speed, and compares with the two-layer
solution. The propagation speed is again smaller for the three-layer fluid. The increased elevation of the stéedanline
conjugate flows, compared to the elevation of the two-layer interface, is small but noticeable.

The discussed three-layer results give evidence of the existence of three-layer mode-one conjugate flows as part of broad
stationary solutions. We have also performed several additional numerical calculations (not reported here) with the same density
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Fig. 6. Propagation speed as function of amplitudé @fash-dot line),/ (thin solid line) andG (dashed line) for the three-layer solutions, and
as function of the amplitude of the single interface (thick solid line) for the two-layer solution. The propagation speeds are scaled by the linear
long wave speed of the three-layer fluid (left vertical axis) and the two-layer fluid (right vertical axis).

differences close to the Boussinesq limit and wiig;ﬁl up to 50. For all layer thicknesses considered we found broad and flat-
crested solutions. In Section 4 we investigate similar solutions, except that the density differences between the layers are much
larger. With large thicknesses of the upper layer, we do not find broad solutions with properties of conjugate flows. Instead,
steep and overhanging solutions are found. Computations with a thick lower layky/i#2.>>> 1, ho = hg andp3/ 1 far from

unity, exhibit broad and flat-crested solutions in accordance with conjugate flows, however.

3.3. Integral properties of the mode-one solutions

Various relations for integral properties like mass, momentum and kinetic energy are derived in Appendix C. The values of
these properties are used as a check on the computations, see Rusas [24].

3.4. Waves of mode-two

Solitary waves of mode-two [17—-21] may have oscillatory short mode-one waves superimposed on the tail traveling with the
same speed as the mode-two wave, termed generalized solitary waves. We aim to supplement existing computations of mode-
two waves using the present three-layer model. It is tempting to start with the corresponding three-layer model of conjugate
flows, as also investigated by Lamb [16].

In the computations of the conjugate flows, the thickness of the outer layers are set/ggsat{) and we search for
solutions for O< h1 3/ho < 10. The total number of solutions is found by a graphical method. Eirsteliminated using
Eqg. (8). The two remaining equations are then visualized as curves in a plane with the remaining unkpaaw; 7, on
the axes. The solutions are finally found at the crossing points between these curves. The graphical technique was used to
identify the number of solutions and to determine initial guesses for Newton—Raphson’s method which we use to solve the
same equations.

o N A~ O

ar ez
ha? hy
-2
-4

-6

hi/hy

Fig. 7. Scaled amplitudes (a) and propagation speed (b) of three-layer conjugate flows. The thicknesses of the upper and lower layers are equal
(h1 = h3). Densities argp3 = 0.977%1 andp = (p1 + p3)/2. Three solutions are shown with different linestyles. The propagation speed in
(b) is scaled dividing with(g’h2)1/2, whereg’ = g(p1 — p3)/p1 is the reduced gravity.
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The same densities as in the previous sections, close to the Boussinesq limit, are chosen. We find that for thicknesses of the
lower and upper layen§ = h3) larger than approximately.47h- there are three mode-two solutions, while for valuekgfh >
less than 47 there is only one solution. In addition there is a very small mode-one solution which vanishes in the Boussinesq
limit. Figure 7 shows the three mode-two solutions. We observe that there is one nearly symmetric solution about the middle
streamlineG. The two other solutions are nearly opposite versions of each other. By turning the vertical axis for one solution it
nearly coincides with the other. This is expected if we invoke the Boussinesq limit where no preferred vertical direction exists.
Thus, if in this limit one solution not symmetric aboGtexists, the solution turned upside down is also a solution.

The bifurcation described above was also noted by Lamb [16] investigating the Boussinesq limit, finding three solutions
for h1/hpy > 1.207... (in our notation). Computations using our model witfy/ p1 = 0.9999 predicts three solutions when
h1/ho > 1.2, which is in agreement.

In addition to the conjugate flow computations, we have made attempts to calculate mode-two solutions using the full
equations derived in Section 2. No satisfactory results were found. Either the iterative scheme broke down or the solutions
had mode-one type waves superimposed on the mode-two solution. Such solutions cannot be represented in the numerical
scheme, because itis not possible to truncate the apparently infinitely long mode-one type disturbances. The absence of perfectly
stationary mode-two solutions of the full method, see also, e.g., Michallet and Dias [19], has motivated us to search for periodic
mode-two waves. Then there is no technical truncation problem, and perfectly stationary mode-two solutions with mode-one
waves superimposed may exist.

Periodic versions of integral equations (1)—(3) were formulated, utilizing the partial fractions expansion of the cotangent-
function. The kinematic and dynamic conditions were left unchanged. A similar periodization was used by Turner and Vanden-
Broeck [9] in their investigation of overhanging periodic deep water interfacial waves in a two-layer fluid with infinite layer
thicknesses.

An important difference between the non-periodic and periodic formulations is that in the former the flow velocity in the
far-field is known to be: along the negative-axis. This is not generally the case for a periodic solution. Except for layers of
infinite thickness, there is no far-field where the velocity is given. Thus an additional condition for each layer is needed to close
the set of equations. In the case of non-periodic waves, the flux through any cross section/otlqyais—/;c. We pose this
requirement on the periodic waves. Other choices are also possible and some are discussed by Rusas [24] which also gives the
details on how the flux requirement is imposed.

Figure 8 shows a series of periodic solutions with= i3 = 4ho and p3/p1 = 0.9775, po = (p1 + p3)/2. The chosen
wavelength is 108 . Only one half wavelength of the symmetric wave is shown. The series of computations is initialized by
a mode-one wave of moderate amplitude reflected in theyliagho/2. This yields a symmetric initial guess, which leads to
convergence of the iterative method against mode-two waves. Other non-symmetrical initial guesses give mode-one solutions
(not shown here).

The waves of increasing amplitude are computed by gradually expanding the volume of the middle layer. The added volume
of the layer enters into the dominant mode-two wave. On this wave a train of mode-one waves becomes superimposed. The
amplitude of the latter, gradually increasing with the volume of the main wave, is vanishingly small in Fig. 8(a) but has become
prominent in Figs. 8(d) and 8(e).

The mode-two wave presented in Fig. 8(d) has depressiqiy (b = —1.7h, of the lower interface and elevation
Im(¢ (1)) — ho =0.788... hy of the upper. The scaled propagation velocityigg = 1.53. ... The corresponding quantities in
Fig. 8(e) are: Iniy (1)) = —1.84... hs of the lower interface, It (1)) — hp = —0.0618. .. hy of the upper interface and scaled
propagation velocity/co = 1.54....

These values may be compared with the three solutions of conjugate flows (Fig. 7), i.e.,

Z_’ — (-172...,-1.83...,-0.847.. ), (20)
2
—h
“’h—z — {1.77...,0.813...,185.. }, (21)
2
£ _(159...,156...,157...}, (22)
o

wherecg/(gh)1/2 =0.0711. ...

While the first of the three solutions in (20)—(22) is approximately symmetric about the middle line of the flow, the second
and third solutions are nearly opposite versions of each other, as previously noted. It is evident that the mode-two wave in
Fig. 8(d) has values of Iy (1)), Im(¢ (1)) — ho andc/cq that are fairly close to the second solution in (20)—(22). A perfect
agreement is not expected due to the presence of the mode-one waves, however. The results in Fig. 8(e) has the largest volume
we were able to pose in the series of computations. It is observed that the dominant mode-two wave is significantly affected
by the mode-one waves in this case. The values @klit)) and Im¢ (1)) — hp are far from any of the solutions in (20)—(22),
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Fig. 8. Streamlines of mode-two periodic three-layer solutions. One half period is shown. Layer thickneases age= 4h,. Densities are
p3=0.977%1 andps = (p1 + p3)/2. The results (a) to (e) are selected from a series of solutions with increasing volume of the middle layer.

however. The waves in Figs. 8(a)—8(e) do of course not approach broad and flat solutions of conjugate flows, as did the mode-one
solutions in Section 3.2.

4. Extreme waves

It is of interest to investigate large-amplitude mode-one solitary waves \fu@,d}l either is much larger or much smaller
than unity, and the density ratig/ o1 is not close to unity.

For interfacial solitary waves Pullin and Grimshaw [8] obtained the following results, which also seem to be the most up-
to-date. They considered a two-fluid system where one of the layers had finite thickness while the other was infinitely thick.
A rather large range of density ratios was investigated. The main part of their results for interfacial waves concerned solitary
waves of elevation with the upper layer being infinitely thick. In this case they found that a large wave always developed a
vertical tangent and became overhanging. The wave developed a bubble-capped limiting wave with finite amplitude, termed
extreme wave. This result is true for a density ratio not close to unity. In the Boussinesq limit they found no limit of the wave
amplitude, however. For waves of depression, in the case of an infinitely thick lower layer, Pullin and Grimshaw gave few
results. Their Fig. 11 plots the wave speed as function of the wave amplitude, indicating, however, that a maximal amplitude
(and thereby a turning point) occurs for theiequal to 0.2. (This wave on an infinitely thick lower layer, is not broad and flat.)

The valuex = 0.2 corresponds t@3/p1 = 2/3 in our notation. Their discussion indicates that the depression wave becomes
overhanging, with a turning point in the speed amplitude plot, when the amplitude normalized by the thinner layer thickness
is about 8. They indicated, however, that the computations with large amplitude were somewhat uncertain. (TNey dfed
discretization points in the computations.)

Prior to Pullin and Grimshaw’s work, Meiron and Saffman [25] and Turner and Vanden-Broeck [9] found that periodic
waves on the interface between two infinitely thick layers had an overhanging extreme form. They found that this result was
true for any (stable) density-ratio, also in the Boussinesq limit.

Motivated by these findings, we investigated extreme waves propagating in the three-layer fluid. Results for two-layer fluid
are computed for comparison.
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Fig. 9. Maximal amplitudes of the interfaces (a) for the three-layer and (b) for the two-layer fluids as function of upper layer thickness.
The solid lines are the results of conjugate flow solutions. The circles are results of the complete model. Dengiigs, ase0.9775 and
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Fig. 10. Extreme three-layer solutions. Relative densitiepgfp, = 0.7 andp3/p1 = 0.4. The thicknesses of the lower and middle layers are
equal. (a) The highest amplitude broad solution found. Upper layer thicknégaalzﬁl. (b) The maximal amplitude solution with upper
layer thicknes§§3 = 30@1 and (c) the most overhanging solution found ﬁcgr: 30131. Nonlinear wave velocities in (a)—(c) are, respectively:
¢/cog=2.6303...,3.3109...,2.7672.... Linear wave velocities in (a)-(c) are, respe(:tiveisi(y;(gﬁl)l/2 =0.7534...,0.7593...,0.7593....
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While the computations in Section 3.2 were all close to the Boussinesq limit, we now choose large density ratios:
p3/p1=0.4, po/p1 =0.7. The valuepz/p1 = 0.4 givesa = —0.428 in Pullin and Grimshaw’s notation. Figures 9(a) and 9(b)
show the resulting maximal elevations of the interfaces as functicfrg;(ffl < 50. In the computation8, = 1. The wave
solutions are broad and flat up to a certain value of the thickness ratio, with elevations very close to those determined by the
conjugate flows model. For the three-layer fluid this meagdi1 up to 17.2 and for the two-layer fluits//1 up to 21. Above
these values afi//1 we do not find broad wave solutions.

The streamlines of the highest broad solutions we found in the three- and two-layer fluids are visualized in Figs. 10(a)
and 11(a). We note that the interface in the two-layer solution is slightly overhanging. For the three-layer fluid we were not,
however, able to obtain a solution that is both broad and overhanging. In other words, the overhanging three-layer solutions we
were able to find never became broad.

We note that the iterative nonlinear method did not find broad solutions for larger thickness ratio than indicated above. This
was true even when the initial guess was extrapolated from solutions with a slightly smaller thickness of the upper layer.

Overhanging waves were computed using the full model for some selected large valugsi pfin the regime where
conjugate flow solutions cannot be reached. In these computations the wave amplitude was increased stepwise up to a maximal
value. These maximal elevations of the interfaces, obtained to graphical accuracy, are indicated in Fig. 9. These elevations are
considerably smaller than those predicted by the conjugate flow model.

The streamlines in Fig. 10(b) visualize the solitary wave with maximal amplitude in the three-layer fluidiwtan= 30
and i/ h1 = 1. The corresponding two-layer solution is shown in Fig. 11¢by/k1 = 30). In both cases the waves are
overhanging. The overhanging wave is most pronounced, and the amplitude is largest, in the three-layer fluid.

y
B 8F (b)

0 10 20 30

.’L'/ibl

Fig. 11. Extreme two-layer solutions. Densities afgp1 = 0.4. (a) The highest amplitude broad solution found. Upper layer thickness is
ﬁ3 = 210}21. (b) The maximal amplitude solution with upper layer thicknég& Sszl and (c) the most overhanging solution found for the
same layer thicknesses. Nonlinear wave velocities in (a)—(c) are, respectjgly= 2.2245.. ., 3.0642...,2.4977... . Linear wave velocities

in (a)—(c) are, respectivelyp/(gh1)/2 =0.7673...,0.7695...,0.7695. . ..
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After having increased the amplitude stepwise up to its maximum, we pursue the branch of solutions further. The solutions
then more and more become overhanging while the amplitude is decreased. Streamlines for extremely overhanging profiles are
visualized in Figs. 10(c) and 11(c). We did not succeed in finding waves being more overhanging. This is most probably due
to lack of a proper discretization of the sharp bend close to where the interface nearly intersects its symmetric counterpart. The
results do indicate, however, that overhanging solutions exist until the interface intersects itself.

Some properties along the whole branches of solutions, from zero amplitude to maximum overhangig waves, are visualized
in Fig. 12. We observe that both the propagation velocity and the net volume of the waves are nearly identical for waves in two-
and three-layer fluids, except that the solution branch extends to considerably larger amplitude in the three-layer fluid.

Solutions have also been calculated close to the Boussinesq limitfdrs}/i, < 50 andhs = hq (results not shown). The
solutions were all broad and flat-crested for the layer thicknesses considered.

We have also computed three-layer waves of depressiomwitihs = 50 andi,/ i1 = 1. The densities were the same as for
the results discussed aboves(p1 = 0.4, p2/p1 = 0.7). The value 0fo3/p1 = 0.4 givesa = 0.428 in Pullin and Grimshaw’s
notation. Based on their results, we had expected that overhanging depression waves were produced by our model, when
the parameters were similar. Surprisingly, we find here that the wave solutions always become broad and flat with elevations
consistent with the conjugate flow results (Fig. 13(a)), however. Broad and flat waves were also found for the two-layer fluid,
where computations are performed witfy//13 up to 100 (Fig. 13(b)). (In this cas® = 600. Several intermediate amplitudes
are calculated but not shown.) The difference between the overhanging extreme waves of elevation and the broad and flat waves
of depression is noticeable. The latter result may indicate that very large waves of depression do not become overhanging. This
is different from what can be indicated by the computations of Pullin and Grimshaw, where speed amplitude plot of depression
waves had a limited maximal maximal amplitude (in the two-layer case) Wihghs = co and theire was equal to 0.2. The
latter corresponds tp3/p1 = 2/3, i.e. a smaller jump in the density than in the present computations.
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Fig. 12. The branch of solutions from wich the overhanging waves in Figs. 10, (b)—(c), and 11, (b)—(c), are taken. The propagation velocity is
scaled by the linear velocity of the two-layer fluid (a), the linear velocity of the three-layer fluid (b). In (c) both (a) and (b) are visualized. The
volume under! (d) for the two-layer fluid, unde€ (e) for the three-layer fluid and both (f). All results are plotted versus amplitudefaf

the two-layer fluid and versus the amplitudefor the three-layer fluid.
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Fig. 13. Broad depression solitary waves with maximal amplitude. (a) Three-layer solutiorfzy;/ileg =50, hy = h3, p3/p1 = 0.4,
p2 = (p1+ p3)/2, N = 300. Non-linear wave velocity is/cg = 3.361.... (b) Two-layer solution withz1/h3 = 100, p3/p1 = 0.4, N = 600.
Non-linear wave velocity is/co = 3.942....

5. Conclusions

We have presented a fully nonlinear numerical method for calculation of symmetric solitary waves in a three-layer fluid.
The method is based on a boundary integral formulation. The model is applied to compute steep and even overhanging waves.
Both non-periodic and periodic versions of the scheme are derived. Simplified equations for three-layer conjugate flows are
derived in parallel. Convergence of the full method is tested and results are obtained to graphical accuracy. The number of
points on each interface is varied between 100 and 240, depending on the steepness of the wave. In a few of the computations
N =600 was used. We also extend existing relations in single- and two-layer flows between mass, momentum and kinetic
energy to three-layer flows. Results of the full equations are compared with the conjugate flow solutions. Three-layer solutions
are compared with corresponding two-layer solutions.

Mode-one and mode-two waves have been investigated. For mode-one waves the following results were obtained. In three-
layer conjugate flows the middle line of the pycnocline attains a higher maximal elevation than in two-layer flows. The wave
speed is smaller in the former than in the latter case, however. Detailed velocity-profiles due to the full equations were visualized
for both three- and two-layer fluids, for moderate thickness ratio between the upper and Ioweﬁiﬁ(ﬁqrzé 4). fzg andle
are defined in Eq. (11), see also Fig. 1. Computations were also produced by the full method close to the Boussinesq limit for
fzg/ﬁl up to 50. The wave-amplitude was gradually increased until broad and flat-crested solitary waves were obtained. The
waves satisfied the conjugate flow solutions. (Results were not shown.)

Computations of extreme mode-one waves were discussed in Section 4 for large thickness ratios and density ratios not close
to unity. In the case when the upper layer is much larger than the two other laggfs (> 1, ho/hq = 1) we generalize
existing results for overhanging solitary waves in a two-layer fluid (Pullin and Grimshaw [8]) to the three-layer case. We find
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that the overhanging waves become more pronounced and the amplitude becomes larger in the three-layer than in the two-layer
fluid. The results here confirm that the limiting configuration of solitary waves of elevation is overhanging waves, also in the
three-layer case.

We have also investigated waves of depression when the lower layer is much larger than the two othéfllﬁ@@l» @,
ho/h1 =1, density ratios not close to unity). Large-amplitude solutions were in this case always broad and flat with excursions
consistent with those of conjugate flows. This is true both for three- and two-layer fluid. (Computations for two-layer flows were
performed forle/ﬁg up to 100.) The difference between the overhanging extreme waves of elevation and the broad and flat
waves of depression is noticeable. The latter result may indicate that very large waves of depression do not become overhanging.
This is different from what was indicated by the computations of Pullin and Grimshaw [8]. We note that, e.g., Sha and Vanden-
Broeck [26] confirm previous computations of overhanging solitary waves of elevation. Their computations of broad depression
waves are always with moderate valuehgf 3.

On this point we mention that Laget and Dias [27], Section 5, summarizing the literature and performing a lot of
computations on large interfacial gravity waves (for two-layer fluid), could not determine whether or not overhanging or
broadening of the waves occurred as limiting configuration. This is in contrast to what we find here: in the Boussinesq limit
the waves always become broad, and, for a large density jump, upward pointing waves always become overhanging, while
downward pointing waves always become broad (one layer being much thicker than the other).

In the case of waves of mode-two, we first examined three-layer conjugate flows. In our numerical examples the thicknesses
of the outer layers were put equal, while the thickness of the middle layer was varied. The densities were chosen close to the
Boussinesq limit. The equations of conjugate flows produced either three or one large amplitude solutions, depending on the
outer layer thicknesses, if they were larger or smaller, respectively, than a certain constant times the middle layer thickness. This
was also found by Lamb [16] who investigated the Boussinesq limit analytically, in parallel to the present work. In addition to
the solution(s) mentioned above, there is a very small mode-one solution, which vanishes in the Boussinesq limit, however.

Attempts were made to calculate solitary waves of mode-two using the full equations, but no satisfactory results were found.
The explanation for this is obviously that a numerical solution of mode-two waves will also contain a train of short mode-one
waves traveling with the same speed as the mode-two wave (Akylas and Grimshaw [18]; Boyd [21]; Michallet and Dias [19,20]).
The short waves, that also are present in the far-field, are non-trivial to account for at the truncation of the computational domain.
Preliminar computations were performed with a periodic version of the mathematical model. A series of waves of mode-two,
with increasing amplitude, were obtained by gradually expanding the volume of the middle layer. Almost the largest mode-two
wave we computed became close to one of the conjugate flow solutions. A train of mode-one waves was superimposed on the
mode-two wave, with amplitude ranging from a small to a large value depending on the volume of the mode-two wave. In the
most pronounced case the mode-one waves significantly affected the mode-two wave. The computations here, for mode-two
waves, supplement those of Akylas and Grimshaw [18] and Michallet and Dias [19,20], investigating either quite different
configurations or parameter-ranges.

Computational aspects of generalized mode-two waves are still unclear. This includes particularly the closure of the
equations at the periodic boundaries and the effect of the imposed wave-length on the computations. On these points, more
investigations are required.
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Appendix A. Discrete equations and computational algorithm

As done by Grue et al. [1], we parameterize the interfaces by introducing variataed £, which are continuous and
monotonic along the interfaces, and 4gt= x (&) describe the interfackandz; = ¢ (&) describe the interface. We evaluate
x and¢ at integer values of andé. These points serve as collocation points of the discrete equations. For convenience, we
will from now use the variablé for both& andé.

Let y17(8) = é1751x | be the scaled tangential velocity of the fluid in layer 1/orThe complex velocity in layer 1 oh
may then be expressed hy; (x (§)) = y17(§)/xz (£)- In general, we defing; to be the scaled tangential velocity in layer
(1, 2, or 3), on interfacg (1 or J), such that the actual tangential velocities g¢g/| x|, k = 1,2, andyy s /|¢e |, k = 2,3, on
interfacel andJ, respectively.
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Introducing the scaled tangential velocities and multiplyingxyor ¢¢, the imaginary parts of (1)—(3) read, foron the
interfaces,

X *
7 Re(yy; +cxg) =ImPV [ (x’—x*€+2ih1> }(m +cxe) dE, (23a)
X/
- Re(yZI +cx§ =Im PV/ ()/21 +oxg)dg — / 7 j : (y2g +cte) 48, (23b)
J
/ / CS é'é
-7 Re(yy, +C§E) = Im/ T (var +cxg) d§ —Im PV[ ﬁ()’Z] +cge) d§, (23c)
1 J
¢ ¢ *
—m Re(yg; +c{é) =Im PV/‘L/ig - (C’ 7 —2$i(h2+h3)> ](y31 + cgg) dg, (23d)
J

where( )’ means that the value is takentat £'.

We will only consider solutions symmetric with respectkte- 0. Symmetry of the interfaces and all other streamlines, gives
the following relation for the velocitiesy, (—z*) = gx (z)* for k = 1, 2, 3. Utilizing the symmetry, we rewrite (23a)—(23d) and
obtain:

/ /
X X *
JTRE()/]/_I-f—CXé) = Im PV/[ - § —( ; § *) ](Vll +cxg) dE

x'=x \xX'+x
Iy
—Im/[( s - >*— Xé - :|(V11+cxg)dé, (24a)
; x' — x* + 2ihy x"+ x + 2ihy
.
X X\
—nRe(yy +exi) = Im PV/[X’—X _<X’+x*) ](VZI +cxe)dé
Iy
[ 2 (Y oo e
x' —¢ x +¢*
A
¢ AN
o=l
7 Re(yz; +ctf) = Im U Ut A (yar +cxg)dé
+
& &\
—Im PV - de, 24
" J/[c’—c <4’+c*> }(”’HQ)E (240)
A
gt &G\
—7 Re(yg; +c¢f) = Im PV/[C,_g —<§,+§*) i|(y31—|—cg‘s)d§
A
Im/[( t )* & ]( + cgg) dg (24d)
_ _ . ,
JI\T == 2o thg)) T ¢ =2z +hy) Yas et
A

wherel andJ; are the parts of andJ, respectively, with G x < co.

We leté =1 be at the collocation points at the symmetry plane 0, and distributeV; and N; points on/; and J,
respectively. The integrals in (24a)—(24d) are evaluated using the trapezoid rule, except in the vicinity of the poles, where we
adopt the procedure described by Dold and Peregrine [28]. In the inféfvall/2, &' + 1/2] around a pole, the integrand is
expanded in powers a& — £’). The principal value integral of a smooth functighis then approximated by the following
scheme:
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Here, we have assumed tl§at£ 1. In the case of’ = 1, a similar expression is easily found.
The discretized versions of Egs. (24a)—(24d) now read:

Ny
7 Re(yyy +oxt) =Im Y [MyrE &) — M€ 6] (i +exe) —cIm(xée), (26a)
E=1
Ny Ny
—mRe(yyy +ext) =I1mY My, €)(var +cxe) — clm(xte) —Im Y My €)(vay +cte), (26b)
§=1 £=1
Nj Ny
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/ X/ =0 = (/o +eM)", E>1,
MpgE.8 =y, e (27c)
/0 =0 = (/0 +¢9)] e=1,
G/C ==+ g1
M 5=, ) . (27d)
36/ =0 = (/@& +xH)7] &=1,
G/C =0 = (G /C+eM)", > LE #E
1 / / _
My E 6 = 3[el/@ =0 = (/¢ +¢9)] e=1¢>1, (27¢)
Cee/(20) — (¢L/ (' +¢9)", £>148 =¢,
See /(28e), £=¢=1,
May € 6) (6 /(¢ =g =2ih)" — ¢ /(' +¢ —2h).,  &>1, 7
3JJ B = LAV K , A
&/ (& — e =2ih)" — /(¢ + ¢ —2ih)]. &=1.

We now rewrite the dynamic boundary conditions in Egs. (4a)—(4b) in terms of the scaled tangential derivatives:

1 (> V112> 1 (2 V212>

so1l e — =] — 502l ¢ = == | — (p1—p2)gIm(x) =0, (28a)
2 ( |xe |2 2 |xe |2

1

2 2
Lo(2_ v \_1 (2_va"\_  _ )=
2p2<c B |2> 2p3<c < |2> (p2— p3)g(IM(¢) — h2) =0. (28b)
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These conditions are applied on each collocation point, e.g., at integer valles of

The described mathematical model is an integrodifferential method, since both integrals and derivatives of the unknown
quantities are involved in the equations. The numerical scheme then includes both sums and finite differences. As done by
Grue et al. [11], differentiations with respect §oof first and second order are approximated by applying the four and five
point Lagrangian differentiation formula for first and second derivatives, respectively. Applied on a fufi¢tiprihese finite
difference formulas become

1
Je@®) = 1—2(—f(€ +2+8fE+D -8f(E -1+ f(§-2), (29)
1
Jee () = 1—2(—f(€ +2) +16f(6+1) —30f(§) +16f(6 — 1) — f(5 —2)). (30)

So far, the only requirement imposed on the distribution of the collocation points is that the first ong,=withshould
be at the symmetry plane= 0. This applies for bothy and J;. By Grue et al. [11], all the collocation points were fixed
with equal intervals in the-coordinate. This simple requirement was chosen because no extremely steep or overhanging waves
were considered. To allow for such waves as well, we distribute the points such that the distance along a straight line between
adjacent points are equal. In addition, thealues of the truncated ends are set to fixed values. We define the distances between
the collocation pointsAL; (&) andAL (&), as

ALiE)=|x@ —xE-D|, £€=23... Ny, (31a)

ALy =t —¢E-1|, £€=23...,Ny. (31b)
The equations describing the collocation point distribution are now for intefface

Re(x (1) =0, (32a)

AL;§)—AL;(6-1)=0 £&=3....Np, (32b)

Re(x(Np) =L, (32¢)
and for interface/ :

Re(¢(1)) =0, (33a)

ALj(E)—ALj(E-1)=0, £§=3,....Ny, (33b)

Re(¢(N))) =L, (33¢c)

whereL is a given length of the truncatdd. and J along thex-axis.

We want the tail ofi; to approach the-axis. This means that I (N;)) = 0. Similarly, we let In{¢ (N;)) = ho. From
numerical experiments we also find that it is advantageous to control the behavior of the truncated ends of the interfaces by
requiring Im(xz£ (Ny)) = 0 and Im(¢g (N 7)) = 0. In addition, when applying the Laplacian difference formulas near and at the
truncated ends, we assume a symmetric extrapolation of the interfaces, such(thatNm) and Im(gg (N 7)) implicitly are
zero. The four explicit conditions mentioned, applied at the truncated endsarfd /., replace the integral equations (26a)—

(26d) at the end points. The integral equations are then evaluagée-dt, ..., Ny —loré’ =1,...,N; — 1.

The unknown variables arg(§), y17(§), y21(§), £(§), y25(§), v37(§) andc. This gives a total of A; + 4N; + 1 real
variables, since both the real and imaginary partg @ and¢ (¢) are unknown. The total number of equations given so far is,
however, only &; + 4N ;. The last missing equation is the one characterizing the solution we seek. This may be an equation
giving the amplitude of either the wave profile éror J, the propagation speed, the volume under an interface, or any other
physical quantity characterizing the solution.

The results presented in this paper, are calculated with different choices of the last characterizing equation. For example,
when calculating conjugate flow solutions, the amplitude reaches an upper bound, but by requiring increasingly larger volumes
under the interface, broader solutions are found.

The nonlinear system of equations is solved by applying Newton—Raphson’s method, with a first-order finite difference
approximation of the Jacobian matrix. This finite difference approximation is simple to implement. Alternatively, it is possible
to deduce the exact expression of the Jacobian matrix from the discretized equations, but differentiating the integral equations
(26a)—(26d) becomes rather involved. This procedure is avoided.

When straightforward finite differencing is applied to obtain the elements of the Jacobian matrix corresponding to one of the
integral equations in (26a)—(26d), a summation averor N; (or both) number of elements must be performed. The number
of operations required to calculate the complete Jacobian matrix is proportioNal, twhere N' denotes the total number of
unknowns. The constant of proportionality is also quite large. Thus it is important to reduce the number of operations of the
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numerical scheme. This is achieved by first utilizing the fact that some blocks of the Jacobian matrix are zero. Next, we exploit
the fact that most of the terms of the sums in Egs. (26a)—(26d) are constant when a quantity at a single collocation point is varied
only. For every element of the Jacobian matrix, we then only recalculate the part of a summation that is affected by a change of
the appropriate unknown. The number of operations needed to calculate a single element of the Jacobian matrix is then fixed,
and is not increasing withv. The total number of operations needed to calculate the Jacobian matrix is now proportmﬁal to

This is of the same order as if the matrix had been calculated by analytical differentiation of the discrete equations.

Numerical experiments show that a good initial guess of the propagation speed is important for convergence of the scheme.
The long wave speed derived in Section 3.2 is used as the initial guess. This speed also serves as a reference for the nonlinear
solutions. The initial shapes of the interfaces seem to be of minor importance.

The numerical scheme was implemented in Matlab. The extensive summations in Egs. (26) and (27) are easily formulated
as matrix multiplications in order to utilize the matrix features of Matlab.

Appendix B. Conjugate flow equationsin the Boussinesq limit

Figure 2 shows that and ¢ become equal and that the normalized differencgs- @ anda; — hp — a become linear
functions ofi»/(2A1) when the relative thickness of the upper layer becomes largehg < 1, ho/h3 < 1). These results
may be obtained from the conjugate flows equations in the Boussinesq limit. We proceed as follows: substituting (5) into
(9a)—(10) we obtain, after some manipulations:

2_ h% h% ] / (34)
C — =g a4y,
L(aj—ap? (h1+ap)?
r h2 h?
2 3 1 /
c - =g (aj +ay —hyp), (35)
L (h3—(ag —h2))? <h1+a1>2]
T K3 h3 h3 3
2 1 2 3 (2 2
c + + —H:|=—g ay+(aj —hp)*). (36)
L(h1+ap?  (aj—ap?  (hg—(ay —hp))? 2 (a7 )

We then introduce =ajy/h3, b= (ayj —h2)/h3, A=a+Db, B=a — b, and divide (34) by (35) and (36) by (35), giving

2 (ho/h3)? 21_ 9

=D G ? /h3)2[1+0(<h1/h3> == (37)
a2l (ha/h3)®  hi+hy 3.3 2

(1-b) [(1_1;)2 1 B g/ ha)? i ][1+O((h1/h3) )]_4(A+B /A). (38)

ExpandingA = Ag + A1, whereA = Aq for hy/h3 =0 andhy/h3 =0, using thath = (A — B)/2 anda = (A + B)/2, (38)
gives thatAg = 1. Egs. (38) and (38) then give

V2 ho h2—h
B=-——+1)—= A1=-2B+ ———, 39
( > T )hg’ 1 R (39)
and it follows that
aj—a N2 hyp a,—hz—a_<3ﬁ )hz

=5 = — 2|, 40
hq 2 2 hq 2 2h1 o

which are valid in the Boussinesq limit whén /i3 < 1, ho/h3 < 1. In (40),4 = (h3 — hy)/2. It also follows from the
equations that = ¢ in the Boussinesq limitwhehy / h3 <« 1, ho/ h3 <« 1. The results in (40) confirm the numerical predictions
in Fig. 2 with p3/p1 = 0.9775.

Appendix C. Integral properties

It is well known that exact relations between integral properties of both surface and internal solitary waves exist. Longuet-
Higgins [29] discussed five relations for surface waves. We will in this chapter consider such relationships between momentum,
kinetic energy and mass of the solitary wave. Such relations were originally proved by McCowan [30] for surface waves. Pullin
and Grimshaw [8] showed that the relations are easily extended to interfacial waves in a two-layer fluid bounded by rigid lids on
top and bottom. Pennel [31] extended the relations further to include also solitary waves in a two-layer fluid with a free surface
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on top. Such relations were also later discussed by Evans and Ford [32]. Previous results are here generalized to the case of
a three-layer fluid. The derived relations serve as checks in the numerical computations.

We defineM;, as the difference in mass of laykrdue to the solitary wave, compared to the undisturbed fluid. For each
layer we obtain

My = plfyxsds, (41a)
1
Mz = o2 [ = hoyds = pz [ yxs (41b)
J 1
M3 = —p3/(y — hp)xg ds. (41c)
J
The momentum in the positive-direction in each layer is
szpk/ﬁd.Q, k=1,23, (42)
2%

where$2;. is the domain of fluidk and a tilde indicates reference to the laboratory frame (in contrast to the frame of reference
moving with the wave). The circulation along an open curve of layier

Ce = bk, = 5 (43)

To derive a relation betweeR, and M}, we follow essentially the same procedure as Longuet-Higgins [29] for free surface
waves. A slight reformulation here means that the proof is valid also for overhanging interfaces. First we note that conservation
of mass yields

/ udy = —hye, (44)
layerk

where we may integrate over any cross section of lay&or values ofc for which the bounding wave profile is overhanging,
the cross section of a layer consist of two separate regions. However, conservation of mass still yields Eq. (44).
The momentum of layek, defined in Eq. (42), may now be expressed as

o0

Py =px / / (u +c)dydx = cMy. (45)
—oo layerk

McCowan [30] proved a simple relationship between the kinetic energy, momentum and circulation of a solitary surface
wave, which read” = (1/2)c(P — phC). HereT, P andp are the kinetic energy, momentum and density, respectively, of the
single fluid layer. The circulatiornt, is defined similarly to Eq. (43). Longuet-Higgins [33] presented a simple proof of this
relation. Pullin and Grimshaw [8] found a similar expression for solitary waves in a two-layer fluid bounded by rigid lids on
the top and bottom. The layers were of constant density and vorticity. Pennel [31] extended the relation to solitary waves on a
two-layer fluid with a free surface on top (and zero vorticity in each layer). We extend his results and obtain the kinetic energy
for solitary waves on a three-layer fluid:

T=T1+T>+T3, (46)
where

~ 1

T = 5c(Px = pchyCr). k=1.2.3. (47)

To prove this relation, we follow Longuet-Higgins [33] for each of the layers, only with slight differences such that the proof
is valid also for overhanging waves. First consider the fluid of lsybetween two distant limits = +X. Let w; denote the
fluid domain of layelk between these limits. The stream functign, is constant on the lower and upper boundaries;ofAt
the vertical cross sections at the distant limvits =X, the flow is uniform such thag;, is independent of the vertical coordinate.
Utilizing this by integrating the squared velocity in the frame of reference moving with the wave, we obtain

[+ yacdy=[[v-avnad=— ¢ v3la= [[ava. 48)
@k Wk Wi

dwy
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The kinetic energy7y, of the fluid withinwy is now determined by

7i 2 f[(<u+c>2+v2)dxdy=[f d¢d¢+c2ffdxdy+2c/[udxdy
Pk
Wk Wk Wk Wk

—chkq}kl)_(x +c? // dx dy —4czth = —chkd;klfx +62// dxdy — 202th. (49)
Wk Wk

Here we have utilized that the differenceyn between the upper and lower boundary-igh;, which is the constant volume
flux of the layer. We have

lim <c2 f [ dx dy — 202th> =My, (50)
X—o00
Wk
and by using Egs. (43) and (45) we obtain
~ 1 1
Tie = 5e(eMy — phiCi) = 5 (P — pichyCr). (51)
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